Technetium Arsenide Tc $_{2}$ As $_{3}$: A Compound with a Superstructure of $\mathbf{M o}_{2} \mathbf{A s}_{3}$ Attributed to Differences in Metal-Metal Bonding*

W. JEITSCHKO and L. H. DIETRICH
Anorganisch-Chemisches Institut, Universität Münster, Corrensstr. 36, D-4400 Münster, West Germany

Received August 13, 1984

Abstract

The new compound $\mathrm{Tc}_{2} \mathrm{As}_{3}$ crystallizes in the triclinic space group $P \overline{1}$ with the lattice constants $a=$ $6.574(1) \AA, b=6.632(1) \AA, c=8.023(2) \AA, \alpha=95.69(1)^{\circ}, \beta=102.03(1)^{\circ}, \gamma=104.31(2)^{\circ}, V=327.3(2)$ \AA^{3}, and $Z=4$ formula units per cell. The structure was determined from single-crystal X-ray data and refined to a residual of $R=0.053$ for $3104 F$ values and 42 variable parameters. It is closely related to the monoclinic structure of $\mathrm{Mo}_{2} \mathrm{As}_{3}$ from which it can be derived by distortion and by doubling of one translation period. Chemical bonding, especially the differences in metal-metal bonding of $\mathrm{Mo}_{2} \mathrm{As}_{3}$ and $\mathrm{Tc}_{2} \mathrm{As}_{3}$ are discussed. © 1985 Academic Press. Inc.

Introduction

Recently the binary system technetiumphosphorus was investigated for the first time (1). Six technetium phosphides were identified of which $\mathrm{Tc}_{3} \mathrm{P}$ (1), TcP_{3} (2), and TcP_{4} (1) could be characterized by singlecrystal structure determinations. In the course of that work a few technetium arsenide samples were prepared (3). Our crystals and Guinier powder patterns originate from that investigation. To our knowledge the only technetium arsenide mentioned in the literature is $\mathrm{Tc}_{3} \mathrm{As}_{7}$ which was reported to crystallize with the cubic $\mathrm{Ir}_{3} \mathrm{Ge}_{7}$ $\left(\mathrm{Ru}_{3} \mathrm{Sn}_{7}\right)$-type structure (4). We have only the results of three samples annealed at

[^0]$950^{\circ} \mathrm{C}$ with starting compositions in the atomic ratios Tc: As $=1: 2,1: 3$, and $1: 9$. The first sample has an X-ray powder pattern of a new phase, the other two samples gave a pattern identified as that of $\mathrm{Tc}_{2} \mathrm{As}_{3}$ plus lines of excess arsenic. Thus our investigation was not comprehensive enough to corroborate the literature results.

Experimental and Lattice Constants

Crystals of $\mathrm{Tc}_{2} \mathrm{As}_{3}$ used for the structure determination were picked from a sample with the starting composition Tc:As $=$ $1: 3$. It had been prepared by reaction of technetium powder (${ }^{99} \mathrm{Tc}$, Oak Ridge Na tional Laboratory, nominal purity 99.8%) and arsenic ($>99.5 \%$ purified by fractional sublimation) in an evacuated and sealed silica tube which contained a small amount of iodine to enhance crystal growth. The sam-

TABLE I
Evaluation of a Guinier Powder Pattern of $\mathrm{Tc}_{2} \mathrm{As}_{3}{ }^{a}$

Subcell $h k l$	hkl	Q_{0}	$Q_{\text {c }}$	I_{0}	$I_{\text {c }}$
001	001	-	167	-	4
$20-1$	010	-	248	-	4
	$10-1$	-	327	-	3
200	0 1-1	350	350	m	53
$20-2$	011	479	480	vw	16
201	0 1-2	786	786	w	26
$40-1$	0 2-1	1031	1031	vw	15
$\left.\begin{array}{lll} 1 & 1-1 \\ 2 & 0-3 \end{array} \Im^{2}-1-1 \quad \begin{array}{rrr} 0 & 1 & 2 \\ 2 & 0 & 0 \end{array}\right\}$			1044		16
		1044	$\left.\begin{array}{l}1044 \\ 1047\end{array}\right\}$	w	13
$\begin{array}{lll} 1 & 1 & 1 \lll 2-1 \end{array} 20-2$		1311	1310	vvw	13
		-	1318	-	11
400	0 2-2	1402	1401	m	57
$11-2 \lll<2_{2-1-2^{*}}^{0} 1^{*}$		1407	1407	w	61
		1414	1415	w	62
$31-1<2{ }^{2} 1-1$		-	1476	-	23
		1477	1479	w	24
003	003	1501	1500	w	54
	120	-	1536	-	5
$\left.31-2<\begin{array}{cc}2-2-1 \\ 2 & 1 \\ 0\end{array}\right\}$		1574	$\left.\begin{array}{l}1573 \\ 1576\end{array}\right\}$	vs	100 96
4 0-4	022	-	1919	-	7
$20-4$	013	1941	1942	m	83
$\left.3 \begin{array}{ll}3 & 1-3<2-2-2 \\ 2 & 1\end{array}\right\}$		2006	$\left.\begin{array}{l}2001 \\ 2009\end{array}\right\}$	w	26 25
-	103	-	2064	-	6
$11-3<2-1-3\}$		2104	2103 \}	m	47
$401 \mathrm{O}_{2}$		2104	2105	m	52
		2117	2117	m	44
-	1-3 1	-	2150	-	3
-	3-1 0	-	2183	-	8
-	$30-1$	-	2219	-	5
$60-3$	030	2236	2236	m	58
		2276	2276	w	30
		2290	2291	w	29
	$12-3$	-	2345	-	3
$\left.51-2<22_{2}^{2-1}\right\}$		2438	2437 7 $\}$	s	82
$60-1$	0 3-2	2515	2514	m	45
$51-1<2{ }_{2-3}^{2} 1$		-	2606	-	4
		-	2615	-	3
004	004	2666	2666	vw	47
$\left.31-4<\begin{array}{c}2-2-3 \\ 2 \\ 1\end{array}\right\}$		2770	$\left.\begin{array}{l} 2762 \\ 2775 \end{array}\right\}$	m	15
-	$30-3$	-	2947	-	3
600	0 3-3	3152	3153	vw	19
$20-5$	014	-	3173	-	9
$312 \ll 2-23^{*}$		3176	3176	w	75
		3197	3196	w	73

TABLE I-Continued

Subcell hkl	hkl	Q_{0}	$Q_{\text {c }}$	$I_{\text {o }}$	$I_{\text {c }}$
$60-5$	032	3290	3291	w	34
	3-2 2		3520	-	5
020	4-1-1	3702	3702	w	84
3 1-5	2-2-4	-	3856	-	9
	213	-	3875	-	8
$80-3$	0 4-1	-	3883	-	3
7 1-3	2 3-1	-	3896	-	3
1-3	2-4 0	-	3899	-	3
$51-5$	2-3-3	-	3917	-	10
$1-5$	222	-	3931	-	9
$80-4$	040	3975	3975	vw	21
$71-4$	2-4-1	-	4123	-	4
	230	-	4125	-	4
601	0 3-4	-	4126	-	4
$40-6$	024	-	4177	-	12
$60-6$	033	-	4318	-	8
${ }^{a}$ The pattern was recorded with $\mathrm{Cu} K \alpha_{1}$ radiation. The indices of the monoclinic subcell in the standard $C 2 / m$ setting ($a \sim 12.85 \AA, b \sim 3.287 \AA, c \sim 9.32 \AA, \beta$ $\sim 123.8^{\circ}$) are listed in the first column. Observed splitted reflections are marked with an asterisk. Because of the large number of unobserved very weak reflections only reflections with calculated intensities (5) greater					

ple was annealed for two weeks at $950^{\circ} \mathrm{C}$ and subsequently quenched.
$\mathrm{Tc}_{2} \mathrm{As}_{3}$ crystals were investigated in a precession camera. They showed triclinic symmetry. The structure refinement resulted in the centrosymmetric group $P \overline{1}$. Lattice constants were refined from a carefully indexed Guinier powder pattern (Table 1) where overlapping reflections were assigned zero weight in the least-squares refinement. The resulting lattice constants are: $a=6.574(1) \AA, b=6.632(1) \AA, c=$ 8.023(2) $\AA, \alpha=95.69(1)^{\circ}, \beta=102.03(1)^{\circ}, \gamma$ $=104.31(2)^{\circ}, V=327.3(2) \AA^{3}$.
The pattern can also be indexed on the basis of a C -centered monoclinic cell corresponding to the $\mathrm{Mo}_{2} \mathrm{As}_{3}$-type structure. That monoclinic cell has been given in three different settings in the literature $(6,7)$. These cells and their relationship to the tri-

Fig. 1. Relation of the monoclinic centered $\mathrm{Mo}_{2} \mathrm{As}_{3}-$ type subcell to the triclinic $P \overline{1}$ cell of $\mathrm{Tc}_{2} \mathrm{As}_{3}$. In the upper left-hand corner the standard $C 2 / m$ setting for the cell of $\mathrm{Mo}_{2} \mathrm{As}_{3}$ is outlined. This is the cell given by Taylor et al. (6). The structure has been determined and described by Jensen et al. (7) in the C2/m cell shown in the upper right-hand corner. These authors have also given lattice constants for the alternate $I 2 / \mathrm{m}$ setting. In the lower right-hand corner the relation of the standard $C 2 / m$ cell of $\mathrm{Mo}_{2} \mathrm{As}_{3}$ to the $P \overline{1}$ cell of $\mathrm{Tc}_{2} \mathrm{As}_{3}$ is shown in a view almost perpendicular to the pseudo $2 / m$ axis.
clinic cell of $\mathrm{Tc}_{2} \mathrm{As}_{3}$ are shown in Fig. 1. The doubled b axis of the monoclinic cell corresponds to the a axis of the triclinic cell. The powder pattern of $\mathrm{Tc}_{2} \mathrm{As}_{3}$ does not contain any of the very weak superstructure reflections due to this doubling. However, the triclinic distortion can clearly be seen from the resolved line splitting of three pairs of reflections. These are marked with asterisks in Table I. Thus the triclinic cell obtained in the single-crystal study is representative for the whole sample.

Structure Determination

Single-crystal X-ray data were recorded in an automated four-circle diffractometer with graphite monochromated $\mathrm{Mo} K \alpha$ radiation, a scintillation counter, and a pulseheight discriminator. The scans were taken along θ with background counts at both ends of each scan. The variable scan rate
was optimized by a fast prescan for each reflection. A total of 10670 reflections was measured in the whole reciprocal space up to $2 \theta=90^{\circ}$. The crystal was about equidimensional with diameters varying between 0.06 and 0.08 mm . An empirical absorption correction was made on the basis of ψ scan data. The ratio of the highest to lowest transmission was 1.62. After averaging equivalent reflections and omitting those with structure factors, less than four standard deviations $3114 F$ values were obtained for the structure determination.

Because the exact composition of the compound was not known, we plotted average atomic volumes versus composition for several binary systems of manganese, technetium, and rhenium with phosphorus and arsenic. From these plots it was possible to narrow the cell content down to only three possibilities: " $\mathrm{Tc}_{6} \mathrm{As}_{13}$," " $\mathrm{Tc}_{8} \mathrm{As}_{12}$," and " $\mathrm{Tc}_{10} \mathrm{As}_{11}$." The formulas with an odd number of As atoms seemed very improbable to us because they required the As atoms to occupy centrosymmetric positions in the more likely space group $P \overline{1},{ }^{1}$ and the expected coordination of the As atoms was incompatible with a centrosymmetric site. Thus the most likely formula was " $\mathrm{Tc}_{8} \mathrm{P}_{12}$," i.e., $\mathrm{Tc}_{2} \mathrm{As}_{3}$ with $Z=4$ formula units per cell, a calculated density of $\rho_{c}=8.59 \mathrm{~g}$. cm^{-3} and a linear absorption coefficient of $\mu_{\mathrm{MOK} \alpha}=383 \mathrm{~cm}^{-1}$.

The structure was then determined by direct methods and subsequent difference Fourier methods. The refinement was carried out by full matrix least-squares calculations employing atomic scattering factors (9) corrected for anomalous dispersion (10). Weights were assigned according to counting statistics. An isotropic secondary extinction parameter was also refined and applied to the F_{c} values. The 10 strongest reflections for which this correction was insufficient were excluded from the final

[^1]TABLE II
Atom Parameters of $\mathrm{Tc}_{2} \mathrm{As}_{3}{ }^{a}$

	x	y	z	$\begin{gathered} B \\ \left(\AA^{2}\right) \end{gathered}$
$\mathrm{Tc}(1)$	0.91439(10)	0.12485(10)	0.62598(8)	0.121(7)
$\mathrm{Tc}(2)$	$0.46559(10)$	0.13475(10)	0.63453(8)	0.120(7)
$\mathrm{Tc}(3)$	0.62816(10)	$0.57273(10)$	0.86623(8)	0.123(7)
$\mathrm{Tc}(4)$	0.08892(10)	$0.57575(10)$	0.85861(8)	0.134(7)
As(1)	$0.54274(14)$	$0.20064(14)$	0.96148(11)	0.181(9)
As(2)	$0.03250(14)$	0.18744(14)	$0.95013(11)$	0.161(9)
As(3)	$0.62869(14)$	0.84500(14)	0.68028(11)	0.143(9)
As(4)	$0.13992(14)$	0.86792(13)	0.68559(11)	0.160(9)
As(5)	$0.76438(13)$	0.43386(13)	0.61569(11)	0.135(9)
As(6)	0.26369(15)	0.41081(14)	0.64958(12)	0.229(9)

[^2]least-squares cycles. The final residual value is $R=0.053$ for 3104 structure factors and 42 variable parameters. A refinement which allowed ellipsoidal thermal parameters lowered the R value ($R=0.047$ for 92 variables) in our judgement essentially only because of correlations with absorption effects. In the listed refinement results (Table II), the thermal parameters are probably somewhat too low because of insufficient absorption correction. Interatomic distances are given in Table III. A listing of observed and calculated structure factors can be obtained from the authors.

Discussion

The pnictides (especially the phosphides and arsenides, to a lesser extent the antimonides, but not the bismutides) of the transition metals (T) can be divided into two groups depending on coordination numbers. In the compounds with low coordination numbers the pnictogen atoms are mostly tetrahedrally coordinated to metal and pnictogen atoms, while the metal atoms have linear twofold $\left(\mathrm{Au}_{2} \mathrm{P}_{3}\right)$, tetrahedral $\left(\mathrm{Cu}_{2} \mathrm{P}_{7}, \mathrm{Ag}_{3} \mathrm{P}_{11}\right)$, square planar (PdP_{2}), or octahedral (most other compounds of this
category) coordination. These are the compounds with high pnictogen content especially of the late transition metals (11). The compounds with high metal content have higher coordination numbers as is typical for intermetallic compounds. The physical properties (especially electrical conductivity and magnetism) of the compounds with low coordination numbers can be rationalized on the basis of classical two-electron bonds. This is not true for the compounds with high coordination numbers, although most of them are metallic conductors.

The transition from high to low coordination is gradual. For instance for the composition $T X_{2}$ ($X=\mathrm{P}$ or As) the compounds with T being an element of the Fe, Co, or Ni group have low coordination, i.e., tetrahedral coordination of the X atoms. In MoP_{2} and isotypic $\beta-\mathrm{WP}_{2}$ one P atom is tetrahedrally coordinated and the other has square pyramidal coordination (12). In $\mathrm{CrP}_{2}, \alpha-$ $\mathrm{WP}_{2}, \mathrm{CrAs}_{2}, \mathrm{MoAs}_{2}$, and WAs_{2}, all with OsGe_{2}-type structure (13), there is also one tetrahedral and one square pyramidal pnictogen atom, however, several second nearest neighbors, which are only 10 to 15% further away, increase the coordination numbers. Such higher coordination numbers occur also for the dipnictides of the vanadium and titanium group metals.

So far no dipnictides of Mn, Tc, or Re are known. Of the well-characterized compounds with a metal/pnictogen ratio smaller than one, $\mathrm{Re}_{3} \mathrm{P}_{4}(14,15)$ can be classified as a high-coordination compound with two crystallographically independent pentacoordinated P atoms. The other compounds with a composition close to $\mathrm{Tc}_{2} \mathrm{As}_{3}$ are $\mathrm{Re}_{6} \mathrm{P}_{13}(16,17), \mathrm{Re}_{2} \mathrm{P}_{5}$ (18), and $\mathrm{Re}_{3} \mathrm{As}_{7}$ (1922). These compounds have tetrahedral coordination for the P atoms and can be rationalized on the basis of classical two-electron bonds. ${ }^{2}$
${ }^{2}$ At first sight the diamagnetism reported for $\mathrm{Re}_{3} \mathrm{As}_{7}$ $(4,19,21)$ seems to be at variance with this statement. In counting two electrons for each short $\mathrm{Re}-\mathrm{Re}, \mathrm{Re}-$

TABLE III
Interatomic Distances (\AA) in $\mathrm{Tc}_{2} \mathrm{As}_{3}$ as Compared to the Corresponding Distances in $\mathrm{Mo}_{2} \mathrm{As}_{3}{ }^{a}$

$\mathrm{Tc}(1)$:	As(3)	2.437	Tc(2):	As(4)	2.553	Mo(1):	As(2)	2.509
	As(4)	2.457		As(3)	2.497		As(2)	2.545
	As(5)	2.485		As(6)	2.520		As(3)	2.553
	As(2)	2.515		As(1)	2.537		As(1)	2.578
	As(4)	2.539		As(3)	2.444		As(2)	2.509
	As(6)	2.550		As(5)	2.464		As(3)	2.553
	$\mathrm{Tc}(2)$	2.925		$\mathrm{Tc}(1)$	2.925		Mo(1)	2.942
	$\mathrm{Tc}(2)$	2.982*		Tc (1)	2.982*		Mo(1)	3.235
	Tc(1)	3.050^{*}		$\mathrm{Tc}(2)$	2.846		Mo(1)	2.942
	$\mathrm{Tc}(4)$	3.170		$\mathrm{Tc}(3)$	3.099*		Mo(2)	3.257
	$\mathrm{Tc}(2)$	3.594*		Tc(1)	3.594*		$\mathrm{Mo}(1)$	3.235
Tc(3):	As(3)	2.453*	Tc(4):	As(4)	2.490	Mo(2):	$\mathrm{As}(2)$	2.581
	$\mathrm{As}(2)$	2.468		As(1)	2.548		$\mathrm{As}(1)$	2.527
	As(5)	2.546		As(6)	2.528		As(3)	2.575
	As(1)	2.550		As(2)	2.472		As(1)	2.527
	As(6)	2.557		As(5)	2.479		As(3)	2.575
	As(1)	2.619		As(2)	2.706		As(1)	2.608
	Tc(4)	2.988		$\mathrm{Tc}(3)$	2.988		$\mathrm{Mo}(2)$	2.955
	$\mathrm{Tc}(4)$	3.037*		$\mathrm{Tc}(3)$	3.037*		Mo(2)	3.235
	$\mathrm{Tc}(3)$	3.081*		Tc(4)	2.915		$\mathrm{Mo}(2)$	2.955
	$\mathrm{Tc}(2)$	3.099*		$\mathrm{Tc}(1)$	3.170		Mo(1)	3.257
	$\mathrm{Tc}(4)$	3.538*		$\mathrm{Tc}(3)$	3.538*		$\mathrm{Mo}(2)$	3.235
As(1):	$\mathrm{Tc}(2)$	2.537	As(2):	Tc(1)	2.515	As(1):	$\mathrm{Mo}(1)$	2.578
	$\mathrm{Tc}(4)$	2.548		Tc(3)	2.468		$\mathrm{Mo}(2)$	2.527
	$\mathrm{Tc}(3)$	2.550		Tc(4)	2.472		Mo(2)	2.527
	$\mathrm{Tc}(3)$	2.619		Tc(4)	2.706		$\mathrm{Mo}(2)$	2.608
	As(1)	2.741*		$\mathrm{As}(2)$	2.649*		As(1)	2.976
As(3):	$\mathrm{Tc}(1)$	2.437	As(4):	$\mathrm{Tc}(2)$	2.553	As(2):	$\mathrm{Mo}(1)$	2.509
	$\mathrm{Tc}(2)$	2.444		Tc(1)	2.539		Mo(1)	2.509
	$\mathrm{Tc}(3)$	2.453*		$\mathrm{Tc}(4)$	2.490		$\mathrm{Mo}(2)$	2.581
	$\mathrm{Tc}(2)$	2.497		$\mathrm{Tc}(1)$	2.457		$\mathrm{Mo}(1)$	2.545
As(5):	$\mathrm{Tc}(2)$	2.464	As(6):	$\mathrm{Tc}(1)$	2.550	As(3):	$\mathrm{Mo}(1)$	2.553
	$\mathrm{Tc}(4)$	2.479		Tc(3)	2.557		$\mathrm{Mo}(2)$	2.575
	$\mathrm{Tc}(1)$	2.485		Tc(2)	2.520		$\mathrm{Mo}(1)$	2.553
	$\mathrm{Tc}(3)$	2.546		Tc(4)	2.528		$\mathrm{Mo}(2)$	2.575
	As(6)	2.447		As(5)	2.447		As(3)	2.445

[^3]The structural characteristics of $\mathrm{Tc}_{2} \mathrm{As}_{3}$ are close to those of $\mathrm{Re}_{3} \mathrm{P}_{4}$. Only the $\mathrm{As}(3)$ and $\mathrm{As}(4)$ atoms have (distorted) tetrahe-

[^4]dral coordination. The $\mathrm{As}(5)$ and $\mathrm{As}(6)$ atoms have (slightly distorted) square pyramidal coordination. The $\mathrm{As}(1)$ and $\mathrm{As}(2)$ atoms may also be considered as square pyramidal, although two of their neighbors are at larger distances than the other three. Each of the four nonequivalent Tc atoms has six As neighbors forming a considerably distorted octahedron. In addition each

Fig. 2. Projections of the structures of $\mathrm{Mo}_{2} \mathrm{As}_{3}$ and $\mathrm{Tc}_{2} \mathrm{As}_{3}$. The numbers correspond to the atom designations. In the upper part of the figure atoms connected by thick lines and atoms connected by thin lines are separated from each other by half a translation period of the projection direction. The standard setting of the conventional C -centered cell is outlined in the left part; on the right side the primitive cell of $\mathrm{MO}_{2} \mathrm{As}_{3}$ is shown. In the $\mathrm{Tc}_{2} \mathrm{As}_{3}$ structure this cell is doubled in the projection direction. As can be seen from the enlarged projection of this structure in the lower part of the figure, the distortions are not very great when viewed along this projection direction.

Tc atom has four Tc neighbors at distances ranging between 2.846 and $3.170 \AA$. These distances are rather large at first sight, however, the distortions of the TcAs_{6} octahedra clearly indicate the $\mathrm{Tc}-\mathrm{Tc}$ bonding character. They are also close to the shortest $T-T$
bonding distances in the aforementioned compounds $\operatorname{Re}_{6} \mathrm{P}_{13}$ (2.76 to $2.94 \AA$), $\mathrm{Re}_{2} \mathrm{P}_{5}$ (2.85 to $2.96 \AA$), $\mathrm{Re}_{3} \mathrm{As}_{7}\left(2.78 \AA\right.$), TcP_{3} (3.09 $\AA)$, and isotypic $\operatorname{ReP}_{3}(2)(3.12 \AA)$ where the $T-T$ bonding character is in agreement with the physical properties. Nevertheless the

Fig. 3. Metal-metal bonding in $\mathrm{Mo}_{2} \mathrm{As}_{3}$ and $\mathrm{Tc}_{2} \mathrm{As} 3$. For both structures corresponding sections of the two dimensionally infinite sheets with metal-metal bonds are shown. For clarity the considerably distorted octahedral As coordinations of the metal atoms are not shown. Almost all metal-metal bonds occur across common edges of the TAs_{6} octahedra. The only exceptions are the horizontal bonds of $3.257 \AA$ in the $\mathrm{Mo}_{2} \mathrm{As}_{3}$ structure and the corresponding bonds in $\mathrm{Tc}_{2} \mathrm{As}_{3}$. These bonds are formed across common faces of the octahedra. The distances are in \AA units. The designations of the metal atoms are indicated by large numbers.
structure of $\mathrm{Tc}_{2} \mathrm{As}_{3}$ cannot be fully rationalized on the basis of two-electron bonds, because the Tc atoms have a total of 10 near neighbors and they have only 9 atomic orbitals available to participate in the formation of the bonding system (violation of the

18 -electron rule). In the overall account, there are 17 near-neighbor interactions per formula unit which would require 34 valence electrons for the saturation of twoelectron bonds, but there are only 29 valence electrons available. Thus, although most near-neighbor interactions will come close to two-electron bonds, some bonds (notably the Tc-As bonds of 2.62 and 2.71 \AA and the As-As bonds of 2.65 and $2.74 \AA$) will have a bond order of less than one. The structure may thus be considered as transitional from the low-coordination structures with two-electron bonds to the high-coordination structures typical for intermetallic phases.

The most striking structural property of $\mathrm{Tc}_{2} \mathrm{As}_{3}$ is its relation to the $\mathrm{Mo}_{2} \mathrm{As}_{3}$-type structure. Figure 2 shows corresponding projections of the two structures along the short translation period of $\mathrm{Mo}_{2} \mathrm{As}_{3}$. It can be seen that the distortions in $\mathrm{Tc}_{2} \mathrm{As}_{3}$ are only minor if viewed along this direction. A view perpendicular to this direction, however, shows much greater distortions. They occur mainly for the Tc atoms while the As positions in $\mathrm{Tc}_{2} \mathrm{As}_{3}$ remain close to the positions of the As atoms in $\mathrm{Mo}_{2} \mathrm{As}_{3}$. A comparison of the T-T distances in $\mathrm{Mo}_{2} \mathrm{As}_{3}$ and $\mathrm{Tc}_{2} \mathrm{As}_{3}$ shows (Fig. 3) that each Mo atom in $\mathrm{Mo}_{2} \mathrm{As}_{3}$ has five Mo neighbors at distances ranging between 2.942 and $3.235 \AA$. In going from the $\mathrm{Mo}_{2} \mathrm{As}_{3}$ to the $\mathrm{Tc}_{2} \mathrm{As}_{3}$ structure one of the five T neighbors of each T atom is moving to greater distances (from $3.235 \AA$ to 3.538 and $3.594 \AA$, respectively) while the other four $T-T$ interactions are shortened on average (from an average of 3.097 \AA in $\mathrm{Mo}_{2} \mathrm{As}_{3}$ to an average of $3.020 \AA$ in $\left.\mathrm{Tc}_{2} \mathrm{As}_{3}\right) .{ }^{3}$ This we take as an indication that all five short Mo-Mo interactions in $\mathrm{Mo}_{2} \mathrm{As}_{3}$ are bonding and that the additional
${ }^{3}$ In judging this difference one should, however, also consider that the Mo atoms are slightly larger than the Tc atoms. This can be seen from the average T-As bond lengths which are $2.553 \AA$ in $\mathrm{Mo}_{2} \mathrm{As}_{3}$ and $2.517 \AA$ in $\mathrm{Tc}_{2} \mathrm{As}_{3}$.
valence electron per metal atom in $\mathrm{Tc}_{2} \mathrm{As}_{3}$ is going into an orbital which is antibonding with respect to the fifth $T-T$ interaction. Thus the metal atoms can relax in their distorted TAs_{6} octahedra to form shorter bonds to the four remaining T neighbors. (It is impossible for a TAs_{6} octahedron to distort in such a way as to allow five additional $T-T$ bonds with optimal bond distances; if one of the five T neighbors is lost, a better overlap of T atomic orbitals and shorter bond distances to the remaining four T neighbors can be achieved.)

The diamagnetism of $\mathrm{Mo}_{2} \mathrm{As}_{3}$ has tempted Kjekshus et al. (7) to apply the general ($8-\mathrm{N}$) rule (a formalism to count electrons in two-electron bonds) ${ }^{4}$ to this compound. For this purpose the Mo-Mo bonds of about $2.9 \AA$ had to be considered as bonding while the Mo-Mo bonds of about $3.2 \AA$ had to be counted as nonbonding. Our discussion in comparison with $\mathrm{Tc}_{2} \mathrm{As}_{3}$ has shown that two-electron bonds cannot account fully for both structures, but nevertheless most near-neighbor interactions will come close to such bonds. We also expect diamagnetism for $\mathrm{Tc}_{2} \mathrm{As}_{3}$ and metallic or semimetallic (zero band gap semiconductor) behavior for both compounds.

A question which remains unresolved is the participation of one $3 d$ orbital of the $\mathrm{As}(5)$ and $\mathrm{As}(6)$ atoms in $\mathrm{Tc}_{2} \mathrm{As}_{3}$ and of the corresponding $\mathrm{As}(3)$ atom in $\mathrm{Mo}_{2} \mathrm{As}_{3}$. The bonding distances of these pentacordinated As atoms to the T atoms are on average only $0.03 \AA$ larger than the bond distances of the tetrahedrally coordinated $\mathrm{As}(3)$ and $\mathrm{As}(4)$ atoms of $\mathrm{Tc}_{2} \mathrm{As}_{3}$ and the corresponding $\mathrm{As}(2)$ atom of $\mathrm{Mo}_{2} \mathrm{As}_{3}$. The smallness of this difference may be taken as an indication that indeed one $3 d$ orbital participates in the bonding. In that case the ($8-\mathrm{N}$) rule

[^5]would not be applicable in the first place because the As atoms would exceed the electron octett, whereas the classical concept of the two-electron bond would not need to be given up for that reason.

The metal-metal bonding in the $\mathrm{Mo}_{2} \mathrm{As}_{3}$ structure and its distorted version $\mathrm{Tc}_{2} \mathrm{As}_{3}$ somewhat resembles the situation of the d^{4} marcasite and the distorted d^{5} arsenopyrite structure. Metal-metal bonding in these compounds has been discussed extensively in the literature $(25,26)$. As is known for the arsenopyrite compounds CoAs_{2} and CoSb_{2} (27) we expect a displacive phase transition of $\mathrm{Tc}_{2} \mathrm{As}_{3}$ upon heating which should result in a high-temperature modification of $\mathrm{Tc}_{2} \mathrm{As}_{3}$ with $\mathrm{Mo}_{2} \mathrm{As}_{3}$-type structure.

Acknowledgments

We are indebted to Dr. R. Rühl for several Guinier powder patterns and for crystals of $\mathrm{Tc}_{2} \mathrm{As}_{3}$. We also thank Dr. M. H. Möller for the competent collection of the four-circle diffractometer data. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

1. R. Rühl, W. Jeitschio, and K. Schwochau, J. Solid State Chem. 44, 134 (1982).
2. R. Rühl and W. Jeitschko, Acta Crystallogr. Sect. B 38, 2784 (1982).
3. R. Rühl, dissertation, Univ. Giessen (1982).
4. F. Hulliger, Nature (London) 209, 500 (1966).
5. K. Yvon, W. Jeitschio, and E. Parthé, J. Appl. Crystallogr. 10, 73 (1977).
6. J. B. Taylor, L. D. Calvert, and M. R. Hunt, Canad. J. Chem. 43, 3045 (1965).
7. P. Jensen, A. Kjekshus, and T. Skansen, Acta Chem. Scand. 20, 1003 (1966).
8. A. D. Mighell and H. M. Ondik, J. Phys. Chem. Ref. Data 6, 675 (1977).
9. D. T. Cromer and J. B. Mann, Acta Crystallogr. Sect. A 24, 321 (1968).
10. D. T. Cromer and D. Liberman, J. Chem. Phys. 53, 1891 (1970).
11. W. Jeitschko, U. Flörke, M. H. Möller, and R. Rühl, Ann. Chim. (Paris) 7, 525 (1982).
12. R. Rühl and W. Jeitschio, Monatsh. Chem. 114, 817 (1983).
13. W. Jeitschko and P. C. Donohue, Acta Crystallogr. Sect. B 29, 783 (1973).
14. S. RundQvist, Acta Chem. Scand. 20, 2075 (1966).
15. R. Rühl, U. Flörke, and W. Jeitschko, J. Solid State Chem. 53, 55 (1983).
16. R. Guérin, M. Potel, and M. Sergent, Mater. Res. Bull. 14, 1335 (1979).
17. R. Rühl and W. Jeitschio, Z. Anorg. Allg. Chem. 466, 171 (1980).
18. R. RÜhl and W. Jeitschko, Inorg. Chem. 21, 1886 (1982).
19. S. Weglowski, Rocz. Chem. 39, 779 (1965).
20. M. Klein and H. G. v. Schnering, J. LessCommon Met. 11, 298 (1966).
21. P. Jensen, A. Kjekshus, and T. Skansen, J. Less-Common Met: 17, 455 (1969).
22. S. Furuseth and A. Kjekshus, Acta Chem. Scand. 20, 245 (1966).
23. E. Mooser and W. B. Pearson, Prog. Semicond. 5, 103 (1960).
24. F. Hulliger, Struct. Bonding 4, 83 (1968).
25. S. D. Wueyeserera and R. Hoffmann, Inorg. Chem. 22, 3287 (1983).
26. W. Jeitschko, U. Flörke, and U. D. Scholz, J. Solid State Chem. 52, 320 (1984).
27. A. Kjekshus and T. Rakke, Acta Chem. Scand. A 31, 517 (1977).

[^0]: * Presented at the Symposium on Metal-Metal Bonding in Solid State Clusters and Extended Arrays, held during the American Chemical Society meeting, St. Louis, Missouri, April 9-10, 1984.

[^1]: ${ }^{1}$ The noncentrosymmetric group $P 1$ is very rare for typical solid-state compounds (8).

[^2]: ${ }^{a}$ All atoms are in the general position of the centrosymmetric space group $P \overline{1}$. Standard deviations in the least significant digits are given in parentheses.

[^3]: ${ }^{a}$ Standard deviations are all $0.001 \AA$. All Tc-Tc and Tc-As distances less than $3.7 \AA$ and all As-As distances less than $3.1 \AA$ are listed. Distances in $\mathrm{Tc}_{2} \mathrm{As}_{3}$ which differ by more than $0.1 \AA$ from the corresponding one in $\mathrm{MO}_{2} \mathrm{As}_{3}$ are marked with an asterisk.

[^4]: As, and As-As interaction one electron per formula unit remains unaccounted for. This electron is probably responsible for the metallic conductivity (21) of this compound. It must be assumed that the weak Pauli paramagnetism caused by this electron is overcompensated by the core diamagnetism.

[^5]: ${ }^{4}$ This remark is not intended to downgrade the great progress which was made in the understanding of electrical and magnetic properties by using this rule to predict such properties from structural data $(23,24)$.

